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Abstract— Recently, a delay-insensitive architecture for gra-
dient descent adaptive control, based on parallel synchronous
detection for model-free gradient estimation was presented [1].
The key to delay insensitivity in the gradient estimation is
careful selection of the phase of the local oscillator in the
mixer of synchronous detection, amounting to a single parameter
to be estimated per control channel. In this contribution we
present a practical adaptive phase selection algorithm for delay
compensation in the adaptive control architecture, and present
experimental results from a SiGe BiCMOS implementation of
the architecture demonstrating sub-microsecond response time
in closed-loop adaptive control.

I. INTRODUCTION

Synchronous detection is fundamental to many systems
which perform analog decoding of an amplitude-modulated
carrier by measuring the component of the received signal in
phase with the carrier. Synchronous detection is also abun-
dant in sensory neural information processing, for instance
for hyperacuity visual processing [2] and biosonar echoloca-
tion [3], to extract signals of interest buried in noise. This
principle extends to model-free [4] adaptive control of an
unknown plant, in which the effect of a control variable on
the measured control objective (“metric”) is estimated by
injecting a ‘dither’ carrier signal into the control variable.
Synchronous detection is then performed by correlating the
objective returned by the plant with the same dither signal. For
multiple control variables u = (u1, u2, . . . , un)T, the gradient
of the metric J = J(u, t) is estimated by applying mutually
orthogonal dither signals to the control variables in parallel,
and performing synchronous detection for each of the control
variables. Since gradient estimation is performed without using
any system model (model-free), the adaptation is immune to
hardware mismatches or non-idealities.

With broad-band random dither signals, this technique is
known as stochastic parallel gradient descent [5]-[8]. With
narrow-band sinusoidal dither signals, this technique known as
multi-dithering [9] has been used extensively in adaptive optics
for wavefront correction. Most analog hardware implemen-
tations of model-free adaptive controllers perform stochastic
parallel gradient descent using Bernoulli distributed dither sig-
nals [10]-[12]. Broad-band excitation, however, suffers from
two major downfalls. First, the adaptation speed is limited
by the delay in the plant and, in general, in the propagation

path. And second, the time-varying transfer function of the
unknown plant affects non-uniformly the amplitude and delay
of the frequency components of the excitation, leading to
signal dispersion.

Narrow-band excitation and more specifically sinusoidal
multi-dithering circumvents these limitations, since any delay
in the propagation path reduces to a single parameter, phase
delay in the perturbed portion of the received metric, that is
easy to compensate, using phase-shifted copies of the dithers
in the synchronous detection scheme. Delay compensation
leads to continuous-time high-speed adaptation as demon-
strated in [13], [1], where the need for a real-time phase
selection process for the dithers in synchronous detection had
been stressed. Recognizing this need, the work presented here
proposes an adaptive algorithm for phase (and therefore time)
delay compensation nested to, and one level higher than, that
of the adaptive control of the plant.

The algorithm is meant for signed gradient descent adapta-
tion and relies on the existence of limit cycles after conver-
gence. In Section III the dependence between the frequency
of the limit cycles and the delay in the loop is discussed.
Section IV clarifies the necessity of a multi-phase oscillator
with at least 6 phases and the proposed algorithm is presented.
Finally, in Section V experimental results from application
of the algorithm in a plant controlled by a SiGe BiCMOS
adaptive controller are shown.

II. CONSIDERED FRAMEWORK

The considered system architecture for which the algorithm
is developed was introduced in [13], is based on sinusoidal
multi-dithering and is shown in Fig. 1. It consists of n channels
in parallel, each serving one of the control variables ui of the
plant. The sinusoidal dithers perturbing the variables ui are
generated at distinct frequencies ωi for each channel by 3-
phase sinusoidal oscillators. The oscillator phase superimposed
to the control variables is fixed, considered as reference and
arbitrarily chosen to be 0o.

The perturbed control variables ũ = (ũ1, ũ2, . . . , ũn)T are
presented to an external plant which returns a metric signal
J = J(ũ), applied in differential form to all channels.
Each channel has a linear multiplier, to keep spurious signal
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Fig. 1. System architecture of the considered framework.

levels minimal, and an adjustable high-order low-pass filter
for synchronous detection.

A comparator extracts the signum of the metric’s derivative
∂J/∂ui. The signum controls the direction of the current in
the charge pump which continuously updates the value of
the control variable ui. A phase selection circuit preceding
and sign selection circuit following the synchronous detector
provide 6 alternative phases of the dither, equally spaced and
spanning the entire phase domain, and allow to compensate
for unknown delays in the metric.

III. SYSTEM STABILITY AND LIMIT CYCLES

Any delay in the adaptation loop introduced either by
the controller or the propagation path leads to a corrupted
estimate of the gradient that can potentially throw the system
to instability. More specifically, time delays τi are mapped to
phase delays ϕi [1] in the perturbed portion of the metric and
result to a scaled estimate of the gradient after synchronous
detection1

J(ũ)τ−delay cos(ωit − ϕoi) =
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where ϕoi is the selected dither phase for the synchronous
detection scheme. If the phase error ϕi − ϕoi is between π

2
and 3π

2 (modulo 2π), a wrong estimate of the sign of the
gradient is retrieved and the system diverges from its optimum
state. Minimization of the phase error (within ±30o) and thus
adaptation can be achieved by appropriate selection of ϕoi,
which is discussed in the next Section.

Assuming that the delay has been compensated, in the
sense that cos(ϕi − ϕoi) is positive and a correct estimate of
the gradient’s sign is extracted, the control system will start
converging to the optimum values for the variables ui. Due

1Overline denotes low-pass filtering.

to the hard-limiting nature of the comparator, convergence
will be slew-rate driven and limit cycles are expected at
steady state. In principle, limit cycles can be eliminated by
adopting a proportional control architecture, however the L-1
norm adaptation of the signed update is robust to impulsive
noise, and the limit cycle oscillations are useful for delay
compensation as will be shown next.

The expected time evolution of the control variables in a
delay-compensated mode is shown in Fig. 2. The variables ui

will converge at a constant rate G set by the charge pump
to their optimum value and will then settle to a limit cycle
of triangular shape around that value. The frequency of the
limit cycles ωLC depends on the loop delay τ which consists
mainly of delay in the comparator, the low-pass filter and the
evaluation of the metric. The amplitude of the limit cycles
ALC is determined both by the loop delay as well as the
convergence rate G. Note the trade-off between convergence
time ts and ALC , for a given loop delay τ .
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Fig. 2. Expected time evolution of the control variables during convergence.

Assuming a plant represented by a quadratic function, that
leads to an inherent 180o phase-shift in the synchronous
detection scheme, and taking into account the 90o phase shift
due to integration at the charge pump, limit cycles will occur
when the total phase shift in the loop is 360o, i.e.,

90o + 180o + ∠H(ωLC) + ωLC · τp = k · 360o (1)

where H(ω) is the transfer function of the filter, k is the
minimum integer for which (1) holds and τp represents any
other delay in the loop, mainly due to propagation. It is
obvious that for a filter of any order there is a k > 0 for which
(1) holds. Equation (1) can be used to derive the frequency of
the limit cycles ωLC .

IV. ADAPTIVE DELAY COMPENSATION ALGORITHM

The proposed algorithm for delay compensation assumes
that the system is already in a state where convergence has
been reached and limit cycles are observed. The algorithm is
therefore meant for compensation of run-time variations of the
delay in the loop that can drive the system to divergence.

System convergence implies that a correct phase ϕoi for
delay compensation has been selected, in the sense that the
estimated sign of the gradient is correct. Having 6 available
phases ϕoi to choose from, this means that at least 1 and
at most 2 of the neighboring phases will also give a correct



estimate, maintain convergence and also exhibit limit cycles.
Figure 3 shows the best and worst case for phase delay
compensation; in case ϕi completely coincides with one of
the available ϕoi, cos(ϕi −ϕoi) is positive for 3 different ϕoi,
whereas if ϕi lies in the mid-distance between two available
ϕoi, cos(ϕi − ϕoi) will be positive for only 2 different ϕoi.
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Fig. 3. (a) ϕi aligns exactly with one of the available phases ϕoi. (b) ϕi

lies exactly in between two available phases ϕoi. In (a) 3 values of ϕoi give
a positive cos(ϕi − ϕoi), whereas in (b) only 2.

The actual selection of ϕoi is based on the frequency of
the observed limit cycles. More specifically, smaller phase
errors ϕi − ϕoi result in higher values of cos(ϕi − ϕoi), and
consequently a larger input is presented to the comparator
which, in turn, achieves lower switching times. Thus, the total
delay in the adaptation loop is reduced and according to (1) a
higher frequency for the limit cycles should be expected.

Based on the above observation, the steps of the proposed
algorithm are the following

1) Starting from an arbitrary initial condition, scan sequen-
tially all possible phase combinations for all channels
and find the combination for which a limit cycle is
observed and has the highest frequency among any other
combination. This combination comprises of the primary
selected phases ϕp

oi, i = 1, . . . , n for each channel. If n
channels are used, 6n combinations have to be scanned.

2) For each channel choose as secondary phase ϕs
oi = ϕp

oi+
60o, i = 1, . . . , n.

3) Iteratively and sequentially for each channel i measure
the frequency of the limit cycle using first the primary
phase ϕp

oi and then the secondary phase ϕs
oi.

4) If no limit cycle is observed using ϕs
oi, then set ϕs

oi =
ϕp

oi − 60o. It is certain that the new secondary phase
will exhibit a limit cycle, since at any moment, at least
two neighboring phases will be able to compensate for
phase delay in a particular channel.

5) Compare the limit cycle frequency of primary and
secondary phase. If the secondary phase exhibits limit
cycles with higher frequency, then ϕp

oi,new = ϕs
oi,old and

ϕs
oi,new = ϕp

oi,old.

6) Repeat steps 3 through 5 for the next channel.

It should be noted that the above algorithm operates on a
larger time scale than that of the actual plant adaptation and
its speed is limited by the measurement of the limit cycle
frequency. Therefore “slow” variations in the loop-delay must
be considered.

V. EXPERIMENTAL MEASUREMENTS

The algorithm has been applied on a SiGe BiCMOS
adaptive controller implemented in a 0.5μm technology ac-
cording to the architecture presented in Section II. For the
experiment, the plant under optimization was a four-input
diode metric implementing the function f(V1, V2, V3, Vref ) =
max(V1, V2, V3, Vref ) − min(V1, V2, V3, Vref ) − 2VF , where
V1, V2 and V3 are the voltage outputs from 3 channels of the
controller, Vref is a reference signal and VF is the forward
voltage drop on the diodes. Function f has a global minimum
when V1 = V2 = V3 = Vref and purpose of the experiment
was to observe all 3 channels of the controller converging to
the reference value Vref .

Adaptation of the plant was observed under varying delay
conditions. The delay was varied by inserting an RF variable
length transmission line between the control output of one
channel, and one of the input terminals of the four-input diode
metric circuit used in the above experiments. This introduced a
0-80 ns variable delay in one of the channels, while the delay
of the two other channels was kept fixed. The experiments
were performed setting the dither frequencies of the 3 control
channels at 86MHz, 118MHz and 149MHz, with a cut-off
frequency of the filter at 20MHz.

Figure 4 shows the observed limit cycle frequency of the
channel perturbed at 86MHz, as a function of the inserted
delay, for all 6 phase selection values, while the other two
channels are set to optimal phase selection values. The delay
is varied in 11 steps with increments of approximately 1.2ns,
that correspond to phase steps of ∼37o for the phase delay ϕi.
Unstable states resulting in no limit cycles have low frequency
values that are outside the range of the graph. As shown,
the phase ϕoi that exhibits the highest limit cycle frequency
cycles sequentially from 60o at an added delay of 0ns to
120o at 10.1ns following a monotonically decreasing trend and
covering all possible values of ϕoi in the intermediate steps.
Note also the decrease of the highest limit cycle frequency as
the delay increases, predicted by (1).

Delay compensation through real-time switching of the
phase ϕoi used for synchronous detection is shown in Fig. 5.
For the experiment, optimal values for the dither phases ϕoi of
all channels were initially set, and the adaptive phase selection
algorithm of Section IV was applied as the delay in one
channel (the one perturbed at 86MHz) was again sequentially
varied in 11 steps at increments of ∼1.2ns. Both the primary
and secondary phases selected by the algorithm are shown.
Clearly, the channel at which the delay is inserted tracks the
delay introduced in its loop, whereas the other channels remain
locked to their constant loop delays.
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Fig. 4. Frequency of the limit cycle as a relation of the introduced delay in a
channel, for all possible selected phases in the synchronous detection scheme.
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Fig. 5. Algorithm application for the case of 3-channel control and of inserted
delay in one channel of the system. The phase selected for compensation
changes only at the channel the delay is introduced (channel 1).

Oscilloscope traces for the adaptation of the metric, both for
the case of no added delay and for the case of a significant
delay (∼80ns) added to one of the channels, are shown in
Figs. 6(a) and (b), respectively. Note that the adaptation time
is below 1μs and due to delay compensation the same in both
cases. Delay compensation operates in a ms timescale and is
limited by the host computer interface and data logging.

VI. CONCLUSION

An adaptive algorithm for real-time delay compensation
in a sinusoidal multi-dithering adaptive scheme has been
presented based on compensation of phase delays in the under
optimization metric. The algorithm relies on the existence of
limit cycles in the control variables after convergence and
runs on top of the actual system adaptation. Measurements
from application of the algorithm on a multi-dithering SiGe
BiCMOS controller show delay compensation in a millisecond
time scale, while a nonlinear plant metric is optimized in sub-
microsecond time scale.
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