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Introduction

Remating by female Drosophila varies by species when measured 
in the laboratory.1 In some species females have been observed 
to remate up to four times in a morning while in others females 
may not remate for a week or more. Laboratory studies also reveal 
that the number of progeny produced by a single mating varies as 
well. Those species in which females remate very frequently (FR) 
in the laboratory are the same species that produce few progeny 
per mating compared with females of infrequently remating (IR) 
species.2

In D. melanogaster and D. simulans natural populations, 
courted females that are willing to remate appear to have sig-
nificantly reduced sperm loads: they produce very few progeny 
compared with courted conspecific females collected at the same 
time but which had refused to mate.3 This observation is con-
sistent with earlier reports in reference 4–6, that after the initial 
effects of copulation itself, it’s the presence of sperm that controls 
whether or not females of these species will remate.

Given the extensive evolutionary interpretations of laboratory 
data on Drosophila reproduction, especially in terms of sexual 
selection, it is critical to know how accurately laboratory observa-
tions reflect the reproductive biology of Drosophila in nature. 
If laboratory observations on female remating rates and produc-
tivity mirror nature, several testable predictions can be made: 
(1) females of FR species, collected at random in nature, should 
produce fewer total progeny than females similarly collected IR 
species females; (2) wild-caught FR females also should exhibit 

Drosophila species vary in the rates at which females remate and the number of sperm they receive in the laboratory. 
In species such as D. melanogaster and D. pseudoobscura, in which females receive thousands of sperm and remate 
infrequently compared with species such as D. hydei and D. nigrospiracula, where females receive only a few hundred 
sperm and remate many times in a day, wild caught females should produce far more progeny. We tested this prediction 
by collecting, directly from nature, females of six species whose remating rates and number of sperm received vary from 
high to low and assessing the proportion of females with sperm and the number of progeny females produce. Over 95% 
of D. pseudoobscura and D. melanogaster females were inseminated while far fewer of the other species contained any 
sperm. In addition, D. pseudoobscura females produced progeny for over two weeks, D. melanogaster for over a week, 
while D. hydei and D. nigrospiracula females ran out of sperm after 1–2 d. These observations suggest extreme sperm 
limitation in these latter species.
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a higher frequency of “spermless” females in nature relative to 
females of IR species. Spermless females will either be virgins or 
females that have run out of sperm.

We utilized the species listed in Table 1 to test these predic-
tions. We chose these species because they were easily collected 
in nature and because we already had information on female 
remating frequency and progeny production from single copu-
lations in laboratory studies. Of the larger number of species 
for which laboratory data are available, these six species were 
accessible to us for field collections and follow-up studies of 
productivity of collected females. The actual number of sperm 
passed during copulation is difficult to measure in Drosophila, 
but in those few species for which these data are available  
(Table 1), Females in the FR species clearly receive fewer sperm 
per mating than in the IR species. We predicted, therefore, that 
randomly collected wild D. melanogaster and D. pseudoobscura 
females will produce more progeny than will wild females of 
D. nigrospiracula and D. hydei. We also predicted that a higher 
frequency of spermless females would be observed in the latter 
two species.

Results

Insemination frequencies and progeny production. 
Proportions of wild caught females found to be inseminated, as 
determined by inspection of dissected sperm storage organs, were 
nearly 100% in D. melanogaster and D. pseudoobscura, but only 
60% in D. nigrospiracula and D. mettleri (Table 2).
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Reproductive potential of males from nature. Because the 
mean number of progeny produced by females of each species is 
less than the numbers reported from laboratory studies, we asked 
how many progeny males randomly selected from nature pro-
duce when mated to laboratory reared virgin females. The aver-
age number of offspring from these single matings to female D. 
melanogaster was 106.7 ± 5.0 (n = 10), to D. hydei, 20.5 ± 1.9 (n = 
13), and to D. arizonae 57.6 ± 4.0 (n = 8), in each case lower than 
the values reported in laboratory studies (Table 4).

The relatively lower numbers of progeny produced by females 
collected from nature was not a function of their having fewer 
ovarioles. Ovariole numbers per female for D. melanogaster were 
42.0 ± 1.66 (n = 12), for D. hydei 48.35 ± 2.02 (n = 9) and 32.72 
± 1.01 (n = 19) for D. arizonae. These values are well within the 
ranges observed for laboratory stocks of these same species.

Discussion

While we could not determine whether those wild females that 
lacked sperm were virgins or had run out of sperm, we feel the 
latter is more likely. On one hand, among D. arizonae, D. hydei 
and D. nigrospiracula, delays in male relative to female sexual 
maturity could argue for an abundance of virgin females in a 
population, and encounter rates with mature males therefore 
may be expected to be relatively low in nature for those species. 
However, all wild males that we collected and paired with vir-
gin females were sexually mature and produced progeny, arguing 
against any deficiency of sexually mature males in the field. High 
dispersal rates8 make it likely that wild populations contain many 
sexually mature males from a range a localities. Furthermore, the 
reproductive biology of D. mettleri suggests that the interspecific 
differences are not explained entirely by delayed male maturity. 
Male D. mettleri are sexually mature within a day of emergence 
while females attain maturity a day or two later.1,9 Yet, a relatively 
high proportion of D. mettleri females in nature lack sperm and 
inseminated females run out of sperm quickly, consistent with 
frequent female remating in this species.10 Elevated female remat-
ing, if it does occur in nature as well as in the laboratory, clearly 
is critical to maintain female fertility in D. hydei, D. arizonae, 
D. nigrospiracula and D. mettleri. In light of what is likely a less 
male-biased sex ratio in the FR species, the difference in the vari-
ance of female reproductive success in the two types of species 
would be of interest to compare.

It is puzzling, given the large numbers of sperm transferred 
by male D. pseudoobscura and D. melanogaster during a single 
copulation in the laboratory, that wild females of these species 
carry as few sperm as they do. Laboratory studies report that 
female D. pseudoobscura receive 25,000 sperm11 and that female 
D. melanogaster receive 4,000–5,00012-15 on a given copulation. 
Furthermore, in nature D. pseudoobscura females are known to 
mate with up to four males16,17 and D. melanogaster females with 
up to six.18 If the numbers of sperm transferred in laboratory mat-
ings is reflective of what occurs in nature, females receive enor-
mous numbers of sperm relative to what they carry at any given 
time. Ovariole numbers in D. pseudoobscura and D. melanogaster 
are similar to those of species like D. hydei and D. nigrospiracula, 

Average progeny production by wild-caught females (Table 2)  
varied significantly (Table 3) among species. Distributions of 
progeny produced by individual females from each species were 
highly variable (Fig. 1). Even the most fully inseminated females 
of species such as D. hydei, did not approach the average prog-
eny number produced by females of D. melanogaster and D. 
pseudoobscura. Although they lived for many weeks afterwards 
(data not shown), female D. hydei, D. nigrospiracula and D. met-
tleri stopped producing progeny within 1 or 2 d of collection. At 
the other extreme, female D. pseudoobscura continued produc-
ing progeny for about 2 weeks. Average progeny production was 
highest in those species, D. melanogaster and D. pseudoobscura, 
in which the majority of collected females also was found to be 
inseminated when dissected.

Table 1. Species of drosophila utilized in the field studies of female 
reproduction

Species
Female remating  

frequency- 
laboratory

Number of sperm 
transferred per  

copulation [Reference]

D. melanogaster 5 d 4,000[15,25,27]

D. pseudoobscura 3–4 d 25,000[11]

D. arizonae daily NA

D. hydei 4X day 126 + 10[26]

D. nigrospiracula 4X day 544[28]

D. mettleri 2X day NA

Female remating frequency is from studies in which females were al-
lowed opportunities to remate during a 2 h period every morning, one 
female in a vial with two males.1 The number of sperm transferred was 
based on cytological observations in earlier investigations.

Table 2. Number of dissected wild-caught females with sperm in their 
reproductive tracts, the number of offspring produced by wild-caught 
females, number of days females were fertile after being captured

SPECIES % females (n) 
with sperm

Mean ± SE (n) 
Offspring/Fertile 

female

Days fer-
tile

D. melanogaster 98.4% (63) 182.1 ± 27.9 (21) 7.9 ± 0.8

D. pseudoobscura 96.5% (57) 225.2 ± 17.8 (36) 14.9 ± 0.8

D. arizonae 73.9% (69) 98.5 ± 10.6 (25) 5.6 ± 0.7

D. hydei 78.3% (23) 28.5 ± 4.8 (24) 1.3 ± 0.1

D. nigrospiracula 62.8% (35) 22.0 ± 2.1 (25) 1.2 ± 0.1

D. mettleri 59.1% (44) 17.9 ± 1.9 (27) 1.1 ± 0.1

Table 3. ANOVA of species differences in offspring of inseminated wild-
caught Drosophila females

Source DF SS F ratio P

Species 5 1167776.2 44.2 5.50E-28

Error 152 803069.7

Total 157 1970845.9
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differing reproductive biologies of these flies. Why do they dif-
fer? Why do females of some species carry so few sperm rela-
tive to others? What is the role of sperm limitation on female 
mate choice and ovipoisiton site selection? These are questions 
to address at the mechanistic, ecological and evolutionary levels.

Materials and Methods

Collection and processing of females. We aspirated flies from 
rotting fruits or cacti at various localities near Tucson, Arizona in 
the summers of 2006 and 2007. Species included D. melanogaster, 
D. pseudoobscura, D. hydei, D. arizonae, D. nigrospiracula and D. 
mettleri. With the exception of D. pseudoobscura, which was col-
lected on Mount Lemmon (32° 26’ 43.93’’N, 110 46’23.03’’W), 
all flies were collected and observed in the Catalina Mountain 
Foothills (32° 18’ 16.37’’N, 110 57’11.40’’W).

We immediately isolated females, without anesthetization, 
into individual eight-dram glass food vials seeded with live yeast. 
We also dissected, in ringer’s solution, a subset of the isolated 
females within two hours of their collection in order to exam-
ine their ventral receptacles and spermathecae to determine the 
number with sperm in their reproductive tracts. The number of 
progeny produced per female was used as a proxy for sperm load, 
rather than number of eggs laid as some oviposited eggs may 

making it unlikely that females of the former two species are 
using sperm faster to fertilize eggs.2

Although sperm dumping by females19 could contribute to 
the lower than expected sperm loads of some females, our data 
suggest that females in nature actually receive fewer sperm than 
they do in laboratory studies. Why might this be the case? Field 
caught males are unlikely to be virgins and thus most matings 
or rematings are unlikely to be with virgin males. On the other 
hand laboratory matings typically employ flies that have been 
held as virgins for a number of days, during which sperm num-
bers build up in the seminal vesicles, likely resulting in the pas-
sage of atypically large sperm numbers. Our data for matings 
of wild-caught males to virgin females show that in nature D. 
melanogaster females appear to receive many fewer sperm per 
copulation than they do in the laboratory. They also may receive 
lower amounts of the accessory gland proteins that accompany 
the sperm and influence female reproductive behavior. Our 
observations are consistent with (1) the need to remate frequently 
to avoid sperm limitation and (2) with the evidence that wild-
caught females of all Drosophila species examined to date carry 
sperm from many males.15-17,20

In addition to maintenance of their fertility, are there addi-
tional consequences for females from frequent mating? In D. 
melanogaster, laboratory mating has been shown to decrease 
female lifespan, as a result of proteins in the male ejaculate.21 
Yet female D. melanogaster obviously live long enough in the 
wild, however, to mate with many males.18 Given that nature is 
likely to be more stressful than the laboratory, it seems surpris-
ing that D. melanogaster females would not experience even more 
“harm” when mating in the wild. If however, females in nature 
receive fewer ejaculatory components along with fewer sperm, 
the costs of mating observed in the laboratory would be differ-
ent in the wild. As expected, however, mating and remating have 
no effect on laboratory lifespan in frequently remating species 
such as D. nigrospiracula and D. mettleri.21 Either ejaculates or 
female responses to ejaculates differ in these species compared 
with those of D. melanogaster such that mating does not shorten 
female lifespan. In fact, in D. mojavensis, the sister species of D. 
arizonae, mated females actually experience increased resistance 
to desiccation,22 suggesting that at least in some species females 
derive benefits from frequent mating in addition to fertility. 
Costs of mating in D. melanogaster, with respect to lifespan,23 
would appear to differ in nature compared with the laboratory. 
Potential benefits of multiple mating may include increased suc-
cess of progeny24 and increased opportunity for postcopulatory 
female control of reproduction.

Natural populations of Drosophila consist of flies of variable 
genotypes, phenotypes, ages and mating histories. Unfortunately 
no means exist to determine the ages of flies captured in nature 
and thus our sample was likely to contain flies of more than one 
age and mating status. Therefore the relative contributions of 
these variables, as well as phylogenetic constraints, to the mea-
sures made in the present study remain unknown. Nonetheless, 
and more importantly, these populations represent the natural 
milieu in which reproductive processes occur and thus provide 
the contexts of natural and sexual selection that have shaped the 

Figure 1. The total number of progeny produced by individual wild 
caught females of each species. Each bar for a given species represents 
the progeny of one female.

Table 4. Productivity following mating of wild-caught males to virgin 
females in comparison to the progeny produced by wild-caught females 
and those from earlier studies of single matings of laboratory reared 
males

Species Mean ± SE number of progeny (number matings)

Field Females 
Present Study

Wild Males 
Present Study

Previous Lab 
Studies

D. melanogaster 182.1 ± 27.9 (42) 106.7 ± 5.0 (10) 130–419[27,29-33]

D. hydei 28.5 ± 4.8 (24) 20.5 ± 1.9 (13) 126[26]

D. arizonae 98.5 ± 10.6 (50) 57.6 ± 4.0 (8) 101[10]
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eggs. Females having oviposited were transferred to new food 
vials. Females not ovipositing were allowed to remain in the same 
vial for three days, after which they were transferred to fresh vials 
that continued to be checked for eggs. We recorded the num-
ber of offspring emerging from each vial for every female, which 
yielded estimates of sperm loads and revealed the number of days 
over which females continued to produce progeny.

Ovariole numbers in females from nature. After collecting 
females from the field, we dissected ovaries immediately in insect 
Ringers’s solution, teased the ovarioles apart with insect pins and 
stained them with Schiff ’s reagent before counting them.
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not be fertilized. Females were transferred to fresh food daily. 
For progeny counts, female D. nigrospiracula and D. mettleri 
were placed in potato-cactus medium with chunks of saguaro 
cactus7 which is their optimal laboratory food for oviposition, 
while standard banana medium was utilized for the other four 
species. Once females had failed to lay eggs for three days, we 
dissected them. None of the females that had stopped ovipositing 
contained sperm.

Reproductive potential of males from nature. We aspirated 
single males at random from the same sites as females and placed 
them individually, immediately and without anesthetization, into 
vials containing single virgin conspecific females that had been 
reared in the laboratory. These experiments were conducted with 
D. melanogaster, D. hydei and D. arizonae. All pairs mated within 
20 min and produced progeny. We serially transferred mated to 
fresh food vials as above, until they ceased ovipositing, to later 
count progeny obtained from matings to wild males.

Progeny counts. Food vials were examined daily to see if 
females had oviposited. The labor-intense nature of transferring 
so many females precluded our ability to count the numbers of 
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