Omar Akbari

Research

Mosquitoes are perhaps the most dangerous animals in the world. They are the primary vectors for major human diseases such as yellow fever, zika, dengue fever, and malaria, which together infect hundreds of millions of humans worldwide, killing millions each year, with over 50% of the world’s population presently at risk (WHO). There are currently no effective vaccines for either dengue fever, ZIKA or malaria, and mosquitoes, including the disease-causing agents they transmit, are rapidly evolving resistance to commonly used pesticides and anti-malarial drugs, respectively. Therefore, given the number of infections and deaths, current approaches for prevention of mosquito-borne diseases are immeasurably inefficient. What remains critical for vector control is the development of catalytic approaches requiring only small efforts that can generate long lasting solutions.

With rapid advances in insect genetic engineering, mathematical modeling of wild populations, synthetic biology, and the comprehensive understanding of dengue and plasmodium lifecycles in mosquitoes, unique opportunities have arisen to eliminate infectious diseases through genetic manipulation of wild insect vector populations. Therefore, our research focuses on studying the basic genetics and physiology of mosquitoes with the overall goal of developing innovative, novel, creative, synthetic biology inspired genetic control technologies for reducing the burden of mosquito-borne diseases on humans. The underlying hypothesis inspiring this work is that the introduction and spread of genes that prevent mosquitoes from transmitting pathogens should, in theory, lead to reduced transmission of these pathogens resulting in reductions of human infections and/or death. To test this hypothesis, we first need a broad understanding of the biology of the mosquito that can be used to develop gene-based strategies for engineering mosquitoes that are resistant to pathogens; secondly, we need to engineer mosquitoes that are resistant to all types of infections; and lastly, we need to develop tools to rapidly “drive” these laboratory developed genes into wild mosquito populations. Together, these aims can conceivably provide a foundation that has the potential to revolutionize vector control of mosquitoes.

Publications

  • Li, M., Bui, M., Ferree, P.M*, Akbari, O.S.*, Embryo microinjection and transplantation technique for genome manipulation of Nasonia vitripennis. (2017). J. Vis. Exp., e56990, doi:10.3791/56990 (2017) ​*Corresponding Author
  • Li M., Bui M., Yang T., White B.J., Akbari O.S.* Germline Cas9 Expression Yields Highly Efficient Genome Engineering in a Major Worldwide Disease Vector, Aedes aegypti. (2017). PNAS ; published ahead of print November 14, 2017, doi:10.1073/pnas.1711538114 *Corresponding Author
  • Li1, Y., Jing, X.A., Aldrich, J.C., Chen, J., Akbari, O.S., Ferree, P.M.* Unique sequence organization and small RNA expression of a ‘selfish’ B chromosome. (2017) Aug 5. doi: 10.1007/s00412-017-0641-x.
  • Adelman, Z., Akbari, O.S., Bauer, J., Bier, E., Bloss, C., Carter, S., Callender, C., Costero-Saint Denis, A., Cowhey P., Dass, B., Delborne, J., Devereaux, M., Ellsworth, P., Gantz V., Gibson C., Hay B.A., Hoddle M., James A.A., James, S., Jorgenson, L., Kalichman M., Marshall J., McGinnis W., Newman J., Pearson A., Quemada H., Rudenko L., Shelton A., Vinetz J., Weisman, J., Wong B., Wozniak C., Rules of the road for insect gene drive research and testing. Nat Biotechnol. 2017 Aug 8;35(8):716-718. doi: 10.1038/nbt.3926.
  • Marshall J.M.*, Buchman, A.B., Sanchez C. H.M., Akbari O.S.*, Overcoming evolved resistance to population-suppressing homing-based gene drives. Scientific Reports. 2017 June 19. doi: DOI: 10.1038/s41598-017-02744-7 *Co-Corresponding Authors
  • Li M., Au. L.U, Douglah, B. J. White, D., Ferree, P.M.*, Akbari. O.S.*, Generation of heritable germline mutations in Nasonia vitripennis using CRISPR/Cas9. *Co-Corresponding Authors, Scientific Reports. 2017 Apr 19;7(1):901. doi: 10.1038/s41598-017-00990-3.
  • Choi H.M., Calvert C.R., Husain N., Huss D., Barsi J.C., Deverman B.E., Hunter R.C., Kato M., Lee S.M., Abelin A.C., Rosenthal A.Z., Akbari O.S., Li Y., Hay B.A., Sternberg P.W., Patterson P.H., Davidson E.H., Mazmanian S.K., Prober D.A., van de Rijn M., Leadbetter J.R., Newman D.K., Readhead C., Bronner M.E., Wold B., Lansford R., Sauka-Spengler T., Fraser S.E., Pierce N.A. Mapping a multiplexed zoo of mRNA expression. Development. 2016 Oct 1;143(19):3632-3637.
  • Cheng, B., Kuppanda, N., Aldrich, J., Akbari, O.S.*, Ferree, P.M.* Male-killing Spiroplasma Alters Behavior of the Dosage Compensation Complex during Drosophila melanogaster embryogenesis. Curr Biol. 2016 May 23;26(10):1339-45. doi: 10.1016/j.cub.2016.03.050. *Co-Corresponding Authors
  • Hall, A.B., Papathanos, P.A., Sharma, A., Cheng, C., Akbari, O.S., Assour, L., Bergman, N.H., Cagnetti, A., Crisanti, A., Dottorini, T., Fiorentini, E., Galizi, R., Hnath, J., Jiang, X., Koren, S., Nolan, T., Radune, D., Sharakhova, M.V., Steele, A., Timoshevskiy, V.A., Windbichler, N., Zhang, S., Hahn, M.W., Phillippy A.M., Emrich, S.J., Sharakhov, I.V., Tu, Z., Besansky, N.J. Radical remodeling of the Y chromosome in a recent radiation of malaria mosquitoes. Proc Natl Acad Sci U S A. 2016 Apr 12;113(15):E2114-23. doi: 10.1073/pnas.1525164113.
  • Champer J, Buchman A, Akbari OS.* Cheating evolution: engineering gene drives to manipulate the fate of wild populations. Nat Rev Genet. 2016 Mar;17(3):146-59. doi: 10.1038/nrg.2015.34. Review. *Corresponding Author
  • Marshall, J.M., Akbari, O.S. Chapter 9 - Gene Drive Strategies for Population Replacement, Genetic Control of Malaria and Dengue, 1st Edition, Zach Adelman. 2015. ISBN: 978-0-12-800246
  • Ferree PM*, Fang C, Mastrodimos M, Hay BA, Amrhein H, Akbari OS.* Identification of Genes Uniquely Expressed in the Germ-Line Tissues of the Jewel Wasp Nasonia vitripennis. G3 (Bethesda). 2015 Oct 13;5(12):2647-53. doi: 10.1534/g3.115.021386. *Co-Corresponding Authors
  • Li J., Olvera A.I., Akbari O.S., Moradian A., Sweredoski M.J., Hess S., Hay B.A. Vectored antibody gene delivery mediates long-term contraception. Curr Biol. 2015 Oct 5;25(19):R820-2. doi: 10.1016/j.cub.2015.08.002.
  • Akbari O.S., Bellen H.J., Bier E., Bullock S.L., Burt A., Church G.M., Cook K.R., Duchek P., Edwards O.R., Esvelt K.M., Gantz V.M., Golic K.G., Gratz S.J., Harrison M.M., Hayes K.R., James A.A., Kaufman T.C., Knoblich J., Malik H.S., Matthews K.A., O'Connor-Giles K.M., Parks A.L., Perrimon N., Port F., Russell S., Ueda R., Wildonger J. BIOSAFETY. Safeguarding gene drive experiments in the laboratory. Science. 2015 Aug 28;349(6251):927-9. doi: 10.1126/science.aac7932.
  • Akbari, O.S., Papathanos, P., Kennedy, K., Sandler, J., and Hay, B.A. Identification of germline transcriptional regulatory elements in Aedes aegypti. Scientific Reports, 2014. DOI: 10.1038/srep03954.
  • Papathanos P.P, Windbichler N., Akbari, O.S., Sex Ratio Manipulation for Insect Population Control. Chapter 6. 2014. Transgenic Insects: Techniques and Applications edited by Benedict, M.Q. DOI. 10.1079/9781780644516.0083
  • Akbari, O.S.*, Antosheckin, I., Hay, B.A, Ferree, P.M*. Transcriptome profiling of the Nasonia Vitripennis testis reveals novel transcripts expressed from the selfish B. Chromosome, Paternal Sex Ratio. G3, 2013. DOI:pii: g3.113.007583v1. *Co-Corresponding Authors.
  • Akbari, O.S., Marshall, J., Chen, CH., Huang, H., Antosheckin, I., and Hay, B.A. Novel Synthetic Medea selfish genetic elements drive population replacement in Drosophila, and a theoretical exploration of Medea-dependent population suppression. ACS Synthetic Biology, 2012. DOI: 10.1021/sb300079h.
  • Akbari, O.S., Antoshechkin, I., Amrhein, H., Williams, B., Sandler, J.,Diloreto, R., Buchman. A., and Hay, B.A. The Complete Developmental Transcriptome of the Mosquito Aedes aegypti, an invasive species and disease vector. G3, 2013. G3 DOI:pii: g3.113.006742v1.
  • Akbari, O.S., Matzen, K., Marshall, J.M, Huang,H., and Hay, B.A. A Synthetic gene-drive system for local, reversible modification and suppression of insect populations. Current Biology, 2013. DOI: 10.1016/j.cub.2013.02.059.
  • Ho, M.C., Schiller, B.J., Akbari, O.S., Bae, E., and Drewell, R.A. Disruption of the abdominal-B promoter tethering element results in a loss of long-range enhancer-directed Hox gene expression in Drosophila. PLoS One, 2011. 6, e16283. PMC3025016.
  • Oliver, D., Sheehan, B., South, H., Akbari, O.S., and Pai, C.Y. The chromosomal association/dissociation of the chromatin insulator protein Cp190 of Drosophila melanogaster is mediated by the BTB/POZ domain and two acidic regions. BMC Cell Biol 11, 2010. 101. PMC3022720.
  • Akbari, O.S., Oliver, D., Eyer, K., and Pai, C.Y. An Entry/Gateway cloning system for general expression of genes with molecular tags in Drosophila melanogaster. BMC Cell Biol, 2009. 10, 8. PMC2654426.
  • Akbari, O.S., Bae, E., Johnsen, H., Villaluz, A., Wong, D., and Drewell, R.A. A novel promoter-tethering element regulates enhancer-driven gene expression at the bithorax complex in the Drosophila embryo. Development, 2008. 135, 123-131. PMC2205987, NIHMS37020.
  • Akbari, O.S., Schiller, B.J., Goetz, S.E., Ho, M.C., Bae, E., and Drewell, R.A. The abdominal-B promoter tethering element mediates promoter-enhancer specificity at the Drosophila bithorax complex. Fly (Austin), 2007. 1, 337-339. PMC2394718, NIHMS41586.
  • Akbari, O.S., Bousum, A., Bae, E., and Drewell, R.A. Unraveling cis-regulatory mechanisms at the abdominal-A and Abdominal-B genes in the Drosophila bithorax complex. Developmental Biology, 2006. 293, 294-304. PMC16545794.

Biography

In May of 2005, Omar S. Akbari received a B.S./M.S. in Biotechnology from the University of Nevada, Reno.

In December of 2008, he received a Ph.D. in Cell and Molecular Biology from the University of Nevada, Reno where he studied the role cis-regulatory modules play in cellular identity along the anterio-posterior axis in developing Drosophila melanogaster embryos. In May of 2009, he joined the laboratory of professor Bruce A. Hay at the California Institute of Technology as a Senior Postdoctoral Scholar to innovate synthetic biology of disease vectors.

In summer of 2015, he became an Assistant Professor of Entomology in the Center for Infectious Disease Vector Research (CIDVR) at the University of California, Riverside. In fall of 2017, he joined the faculty as an Assistant Professor in the Cell and Developmental Biology Section, within the Division of Biological Sciences, at the University of California, San Diego.